
Wigner function for the radial equation of the Coulomb problem in Langer space

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 209

(http://iopscience.iop.org/0305-4470/39/1/015)

Download details:

IP Address: 171.66.16.101

The article was downloaded on 03/06/2010 at 04:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 209–217 doi:10.1088/0305-4470/39/1/015

Wigner function for the radial equation of the
Coulomb problem in Langer space

J Stanek and J Konarski

Faculty of Chemistry, Adam Mickiewicz University, 60–780 Poznań, Poland

E-mail: jerzy@rovib.amu.edu.pl and konarski@rovib.amu.edu.pl

Received 2 July 2005, in final form 27 September 2005
Published 7 December 2005
Online at stacks.iop.org/JPhysA/39/209

Abstract
In this paper a theoretical study of the Coulomb problem in quantum phase-
space is reported. The Langer coordinate transformation is used to map the
Coulomb problem into a one-dimensional Morse oscillator. As a result the
Wigner distribution functions for the Morse oscillator are obtained. The form
of these functions is presented for a few principal quantum number n and the
angular momentum quantum number l. The results obtained correspond to the
solution of the Coulomb problem in the spherical coordinate system.

PACS numbers: 03.65.−w, 03.65.Ca, 03.65.Sq

1. Introduction

Phase-space quantization is one of the three main autonomous and logically complete
formulations of quantum mechanics (QM) [1]. The first is the standard one utilizing operators
in Hilbert space, developed by Heisenberg, Schrödinger, Dirac and others. The second one
relies on the path integrals, and was conceived by Dirac and constructed by Feynman. In the
phase-space formulation of QM, the observables and matrix elements are computed through
phase-space integrals of c-number functions weighted by a Wigner function [2],

fg,h(y, k) = 1

π

∫
w∗

g(y − y ′)w∗
h(y + y ′) e−2iy ′p dy ′. (1)

This phase-space distribution function is a special representation of the density matrix in the
Weyl correspondence [3, 4].

The Wigner distribution function (WDF) has been increasingly recognized as an
important tool for the analysis of the quantum–classical connection, particularly in quantum
optics [5, 6]. Based on the well-known concept of phase-space, it constitutes a natural
language to study quantum chaos [7] and decoherence [8]. It can be used to calculate
expectation values of any operator [9]. The WDF provides also easier interpretation and
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thus the possibility of obtaining more comprehensive physical insights into the dynamics
of any quantum systems. Therefore, it seems to be valuable to find as many as possible
solvable quantum systems in the phase-space. The hydrogen atom is a system whose general
properties are the foundation to understand the structure of other atoms or molecular systems.
Its Schrödinger equation (SE), expressed in the position or momentum representation, can
be solved rigorously [10], but in the phase-space the mathematical treatment is much more
complicated [11–14]. In this paper we can show how to calculate WDF using a very simple
mathematical trick that maps the radial Coulomb problem into the Morse oscillator. The
advantage for treatment of the radial Coulomb problem as the Morse oscillator is a well-known
representation of the WDF for the Morse oscillator problem [15]. Moreover, this approach
permits a description of internal states in terms of Wigner trajectories without violating the
Heisenberg uncertainty principle [16]. Next, the maxima of the marginal distribution of the
WDF can be recovered as those of the radial distribution functions of the 1s, 2s, 2p, etc orbitals,
obtained from the solution of the SE in spherical space.

The purpose of this paper is to determine the Wigner distribution function for the
radial equation of the Coulomb problem using the scaled Langer transformation [17]. This
transformation has previously been used in several branches of physics, including the WKB
studies of the radial Schrödinger equation [18]. In a similar context the radial Wigner
quasiprobability distribution function has been investigated by Twamley [19]. In his paper
he showed how to construct the radial operator for a quantum state in a two-dimensional
harmonic Fock representation satisfying the Heisenberg–Weyl algebra. However, all integrals
have been calculated only numerically.

The outline of the paper is as follows: in section 2 the SE for the radial Coulomb
problem is mapped into the one-dimension Morse oscillator by a coordinate transformation in
Langer space and then in section 3 the relation between eigenfunctions of these two systems
are obtained. In section 4 by using the above connection, the explicit Wigner phase-space
distribution function for Coulomb problem is calculated. Finally, in section 5 we discuss the
results, and present some conclusions.

2. Mapping of the Coulomb problem into the Morse oscillator

In this section we review the connection between the radial Schrödinger equation for
a hydrogenic atom and the Morse potential. In spherical polar coordinates, the radial
Schrödinger equation for the one-electron atom, after separation of the angular components,
looks like

− h̄2

2µ

1

r2

d

dr

(
r2 dR(r)

dr

)
+ Veff (r)R(r) = EnR(r), (2)

with Veff (r) = h̄2

2µ

l(l+1)

r2 − Ze2

4πε0r
, where µ is the reduced mass of the nucleus–electron system,

Ze is the nuclear charge, −e is the electronic charge and ε0 is the permittivity of vacuum. The
effective potential Veff (r) contains, in addition to the contribution from Coulomb attraction,
a repulsive term due to the angular motion of the electron. The magnitude of the angular
momentum term depends on the quantum number l, which results from the solution of the
angular part of SE. The common approach to the radial equation (2) is to transform it into the
form of associated Laguerre equation with a well-known solution [9].

In this paper we use the mapping of the radial SE for the Coulomb problem into the
Schrödinger problem for the one-dimension Morse oscillator. The relevant mapping which
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shall lead to the Morse oscillator follows from the scaled Langer transformation. First, define
a radial wave function u(r) by rR(r) which upon substitution into equation (2) yields

− h̄2

2µ

d2u(r)

dr2
+

(
h̄l(l + 1)

2µr2
− Ze2

4πε0r

)
u(r) = Enu(r). (3)

Changing the independent variable from r to x = − ln(r/r0), where r0 is the constant to be
determined later, x is the dimensionless coordinate, and introducing the dependent variable as
u(r) = e−x/2w(x), we obtain the modified equation for w(x)

− h̄2

2µr2
0

d2w(x)

dx2
+

(
−En e−2x − Ze2

4πε0r0
e−x

)
w(x) = −h̄2

(
l + 1

2

)2

2µr2
0

w(x). (4)

If we now define r0 as

r0 = − Ze2

2(4πε0)En

, (5)

SE (4) takes the form of SE for the Morse oscillator

− h̄2

2µ

d2w(x)

dx2
+ D(e−2x − 2e−x)w(x) = −h̄2

(
l + 1

2

)2

2µ
w(x), (6)

where D is defined as

D = − Z2e4

4(4πε0)2En

. (7)

Note that the equation (6) is not the regular type of SE. The unknown eigenenergy En is a
parameter, and determines the Morse well depth, whereas the eigenvalues −h̄2

(
l + 1

2

)2/
2µ

are known and for each value of l determine an energy level in that well.

3. The Morse oscillator

The Morse potential VM(r) = D(e−2αx − 2e−αx) where D is related to the depth of the
potential well, and α is the parameter controlling the width of this potential well, was proposed
in 1929 for modelling internuclear potentials in diatomic molecules [20]. The SE for the
vibrational levels of diatomic molecules can be expressed as

− h̄2

2µ

d2w(x)

dx2
+ D(e−2αx − 2e−αx)w(x) = Ẽυw(x). (8)

The analytical solution of the SE associated with the Morse potential is given by

wυ,λ(y) = Nυξβe−ξ/2L2β
υ (ξ), (9)

where L2β
υ (ξ) are the associated Laguerre functions. The argument ξ is related to the

displacement coordinate x by ξ = 2λ e−y , where y = αx. The variables λ and β are
related to the potential and the energy, respectively, through

λ =
√

2µD

αh̄
(10a)

and

β =
√

−2µẼυ

αh̄
, (10b)

with the constraint condition β = λ − υ − 1
2 . The normalization constant is given by

Nυ =
√

(2λ−2υ−1)�(υ+1)

�(2λ−υ)
.
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The corresponding eigenvalues can be written as

Ẽυ = −D

(
1 − αh̄√

2µD
(υ + 1/2)

)2

, (11)

in which the quantum number υ only takes on positive integers satisfying the inequality

0 � υ � trunc(λ − 1/2), (12)

where trunc(λ − 1/2) denotes the largest integer smaller than λ − 1/2, and gives a measure
of the number of bound states. The formal similarity between the eigenequations (6) and
(8) allows the use of the well-known representation of WDF of the Morse oscillator for the
radial Coulomb problem. These two equations become identical if we put α = 1. Comparing
equation (6) with equation (8) and equaling (11) with the right-hand side of (6), we can obtain

Dα=1 = n2h̄2/2µ, (13)

where n can take two possible values. The first one

n = υ + l + 1 (14a)

and the second one

n = υ − l. (14b)

Substituting the expression for D from (13) into (12) we can obtain restriction on l for fixed
n: 0 � υ � n−1/2. Because υ must be an integer correct expression for υ is 0 � υ � n−1.
Then, using the last inequality together with equation (14a), where l = n − υ − 1, we obtain
the well-known restriction on l to be 0 � l � n − 1.

Equation (14b) can be rejected because it leads to negative integers for l, which are
forbidden. Next, inserting (7) into equation (13) we can get the well-known result for discrete
energies for the hydrogen atom

En = − Z2e4µ

(4πε0)22n2h̄2 . (15)

Inserting once again (13) into (6), we can obtain for each principal quantum number n an
individual SE for the Morse oscillator

−h̄2 d2w(x)

dx2
+ n2h̄2(e−2x − 2e−x)w(x) = −h̄2

(
l +

1

2

)2

w(x) (16)

with −h̄2
(
l + 1

2

)2/
2µ as the eigenvalue, and the effective potential V (x) = n2h̄2(e−2x − 2e−x),

depending on the quantum number n.
Equation (16) can be interpreted as SE for the centrifugal motion, because the effective

potential in equation (16) includes the total energy minus the Coulomb potential. With the help
of equation (5) we can find the minimum for the nth Morse potential. The new equilibrium
coordinate r0(n) is given by the expression r0(n) = n2h̄2(4πε0)

Ze2µ
= n2a0, where a0 is the Bohr

radius.
The radius r0(n) is simply that of the nth Bohr orbit. Thus equation (16) describes just the

oscillations about the Bohr orbit, subjected to the Morse potential, as a result of centrifugal
motion. Using equation (13) for D and eigenvalues of equation (6) for Ẽυ and comparing
these equations with (10a) and (10b), respectively, we can get

λ = n and β = l + 1
2 . (17)

Hence, the wave function w(y) of the transformed radial equation (5) is given by

wn,l(y) = Nn,lξ
l+ 1

2 e−ξ/2L2l+1
n−l−1(ξ), (18)

where Nn,l =
√

(l+ 1
2 )�(n−l)

�(n+l+1)
.
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4. The Wigner function for the radial equation of the Coulomb problem

To find WDF for the radial equation of the Coulomb problem mapped into the Morse oscillator,
we closely follow [14]. In the calculation of WDF we use a dimensionless coordinate y, and the
dimensionless momentum k corresponding to y defined as kα=1 = p/(αh̄). Using equation (1),
and introducing a new integration variable τ = e−y ′

we can get for the wave function given
by equation (18) the expression for WDF

fg,p,h,q(y, k) = 1

π

∫
w∗

g,p

(y

τ

)
wh,q(yτ)τ−2ik dτ

τ
. (19)

Integration of equation (19) leads to the following results

fg,p,h,q(y, k) = 2

π
Ng,pNh,qξ

p+q+1
g−p−1∑

r=0

h−q−1∑
s=0

br(g, p)bs(h, q)ξ r+sKv(ξ), (20)

where bj (n, l) = (−1)j

j !
�(n+l+1)

�(n−l−j)�(2l+j+2)
(j = r, s n = g, h l = p, q), and

Kη(ξ) = 1

2

∫ ∞

0
τ κ exp

[
−y

2

(
τ +

1

τ

)]
dτ

τ
. (21)

The Kη(ξ) are the modified Bessel functions of the third kind, also known as the MacDonald
functions with η = q − p + 2ik + s − r . The numerical integration of equation (21) is
accompanied by a few difficulties, but several methods to circumvent these difficulties can be
found in the literature (see for example [21]).

5. Results and conclusions

In this paper we present a detailed study of the WDF only for pure states, i.e., when g = h = n,
and p = q = l.

In the two series of 3D plots and contour plots the results of the calculations performed
are presented for n from n = 0 to n = 5 with l = 0, and for all angular momentum quantum
number l allowed for the quantum number, n = 5, respectively.

In all figures of WDF we used the dimensionless coordinate − ln(r/a0) defined as
yα=1 ≡ x = − ln(r/r0(n)) = − ln(r/n2a0) = − ln(r/a0) + 2 ln(n), and the dimensionless
conjugate momentum k.

Our discussion is based upon the well-known observation that the whole phase-space
region that supports the WDF can be separated into three subregions. The central part of the
WDF is occupied by the highest maximum. This region borders on the inner region where the
function oscillates between positive and negative values. The outer region is characterized by
the fast oscillatory decay.

In figures 1(a)–(d) we present the results for the WDF when l = 0. For the ground state
(n = 0) the WDF is positive everywhere with one single maximum. The first excited state
(n = 1) is characterized by the highest peak localized at higher values of y, and negative
minimum at the origin. Every succeeding excited state generates additional an even or odd
number of extremums localized in the inner region, while the main maximum moves further
to higher values of y.

In figures 1(a)–(d) we can also see the marginal distribution (MD) as the probability of
finding an electron at a given radius from the nucleus. Note that these distributions correspond
perfectly to the nodal behaviour of the radial distribution wave function in configuration space
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(a) (b)

(c) (d )

Figure 1. The Wigner distribution function fn,l (−ln(x/a0), k) for (a) n = 1, (b) n = 2, (c) n = 3
and (d) n = 4 with l = 0, and marginal distribution in the position representation.

representation. The highest maximum of MD is localized at the most probable and average
distance equal to the Bohr radius which moves to the higher values of r as n increases. Also,
the number of nodes n − l − 1 equals to that of the radial distribution function.

In the following figures 2(a)–(e) we show the contour plots of WDF of the excited state
with n = 5, where l = 0, 1, . . . , 4. These plots show clearly that the increase in l gives rise to
a decrease in the number of singularities of WDF. This time the position of the main maximum
gets closer to the origin of the WDF as l increases, which once again stresses the similarity
between WDF and the radial distribution functions depicted in figure 3.

To conclude, we show that WDF is a very useful representation linking the quantum
mechanics and classical description. Because this representation allows a description of a
quantum system in terms of classical concepts, the Wigner approach seems to be very suitable
for description of quantum chaos, collision dynamics, transport or radiation processes and
many others from different branches of physics (see for example [22] and references therein).
Hence, it is very significant to find every solvable quantum system in the phase-space.
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(a)

(c)

(e)

(d )

(b)

Figure 2. Contour plots of the WDF for n = 5 with (a) l = 0, (b) l = 1, (c) l = 2, (d) l = 3 and
(e) l = 4.

The application of Langer transformation gives a complete equivalence of the radial
Coulomb problem to the Morse oscillator. The knowledge of the solution of the WDF for
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Figure 3. Curves of marginal distributions normalized to unity for the five quantum states
corresponding to the contour plots in figures 2(a)–(e).

the Morse oscillator enables us to obtain in the same way the WDF for the radial Coulomb
problem.

The power of this method lies in a very simple scheme leading to the correct radial WDF
confirmed by the proper marginal probability distributions. In all calculations we obtained
the appropriate characteristic of nodal points for the radial density of probability for the wave
function in configuration space representation. Within the Langer transformation all integrals
turned out to be particularly easy to solve analytically.

Another interesting result that should be mentioned is that the Langer transformation
applied to the Coulomb problem with centrifugal force is changed into the Morse potential
without the centrifugal term. It leads to a much easier solution of the problem discussed.

Finally, we demonstrate that the phase-space formulations provide different insights and
‘easily understandable’ visualization of the model studied and any other quantum system.
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